Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding the mechanisms that enable species coexistence is essential for explaining community structure and biodiversity. We tested the hypothesis that dietary niche partitioning facilitates coexistence between two dominant stream predators in western North America: Coastal Giant Salamanders (Dicamptodon tenebrosus) and Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii). These aquatic predators are important regulators of community dynamics and ecosystem processes in stream networks. We analyzed stomach contents from 81 salamanders and 96 trout collected via electrofishing in a 6-km section of Lookout Creek, Oregon, during low flow conditions in summer. We predicted that salamanders, primarily nocturnal benthic feeders, and trout, visual consumers of both terrestrial and aquatic prey, would exhibit distinct diets reducing direct diet overlap. We identified 4,897 prey items, classifying them into aquatic (50) and terrestrial (77) sources across 127 categories. Salamanders primarily preyed on aquatic invertebrates (Trichoptera, Ephemeroptera, and Plecoptera), while trout consumed a mix of terrestrial and aquatic invertebrates (Diptera, Trichoptera, and Plecoptera). Partial dietary overlap confirmed niche differentiation as a likely mechanism facilitating the coexistence of trout and salamanders. These findings highlight the role of dietary partitioning in structuring predator communities and inform predictions of how environmental changes may impact stream ecosystems.more » « lessFree, publicly-accessible full text available July 12, 2026
-
Abstract AimClimate change is broadly affecting phenology, but species‐specific phenological response to temperature is not well understood. In streams, insect emergence has important ecosystem‐level consequences because emergent adults link aquatic and terrestrial food webs. We quantified emergence timing and duration (within‐population synchronicity) of insects among streams along a spatiotemporal gradient of mean water temperature in a montane basin to assess the sensitivity of these phenological traits to heat accumulation from mid‐winter through spring emergence periods. LocationSix headwater streams in the Lookout Creek basin, H.J. Andrews Experimental Forest, Oregon, USA. MethodsWe collected emerging adults of four abundant insect species twice weekly throughout spring for 6 consecutive years. We fit Gaussian models to the empirical temporal distributions to characterize peak emergence timing (mean) and duration (days between 5th and 95th percentiles) for each species/stream/year combination. We then quantified relationships between degree‐day accumulation and phenological response. ResultsOnly one of the four species (a caddisfly) showed a simple response of earlier emergence timing in both warmer streams and years. One stonefly had lengthy emergence periods resulting in substantial phenological overlap between warmer and cooler streams/years. Interestingly, two species (a mayfly and a stonefly) responded strongly to temporal (interannual) temperature differences but minimally to spatial differences, indicating that emergence was nearly synchronous among streams, within years. These two species had among‐stream differences approaching 500 degree‐days from mid‐winter to peak emergence. Conversely, duration of emergence was more strongly associated with spatial than temporal differences, with longer duration in lower‐elevation (warmer) streams. Main conclusionsEmergence phenology has species‐specific responses to temperature likely driven by complex cues for diapause or quiescence periods during preceding life cycle stages. We hypothesize a trade‐off between complex phenological response that synchronizes emergence among heterogeneous sites and other traits such as adult longevity and dispersal capacity.more » « less
An official website of the United States government
